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1 introduction

This report describes MESA?, a software environment for creating applica-
tions that automate NASA mission operations. MESA enables intelligent
automation by utilizing model-based reasoning techniques developed in
the field of Artificial Intelligence. Model-based reasoning techniques are
realized in Mesa through native support of causal modeling and discrete
event simulation,

This report will focus on MESA as a tool for model development and
model-based reasoning in problem domains specific to NASA. This sect ion
continues with a discussion of the background and objectives that mo-
tivated the development of MEsA.  Section 2 describes the concepts and
terminology of causal modeling as implemented in MESA. Section 3 uses
an example modeling session to give aconceptual overview of MrsaA’s ar-
chitecture and user interaction paradigm. Finally, Section 4 summarizes
the status of our ongoing experimentation with MEsA in NASA problem
domains.

'MisA stands for Modeling Environment for Systems Automation.



1.1 Background

Within NASA, there are great pressures (o reduce the cost of mission devel-
opment and operations while maintaining reliability and effectiveness. One
approach that is increasingly desired and often necessary is to automate
monitoring and diagnosis of spaceborne systems through the deployment
of software applications which utilize a computer-based model of these
systems. However, there are severa bottlenecks associated with ongoing
automation efforts. For example, the overhead of model development can
be prohibitively large. Also, model design is often bound to a specific
mission application, thereby inhibiting model reuse.

To lower the development and deployment costs of a given mission, as
well as guarantee a level of correctness, the technology base for monitor-
ing and diagnosis should be generic and easily customizable for a specific
mission. These constraints are satisfied by a modeling environment that
provides a generic model representation scheme as the foundation for a
suite of robust tools for monitoring and diagnosis. MisA was built on the
premise that model-based reasoning techniques for monitoring and diag-
nosis can use a generic model representation as a stepping stone to focus

development efforts on reusable models and low-cost custom applications.



models in acomponent-centered, object-oriented fashion [5, 1]. Together,
EDSE and EDsEL form a robust tool for evaluating applications of model-
based reasoning. EDsE features a user-programmable simulation protocol
which enables a wide range of application-specific model-based reasoning
strategies. EDsEL employs the concepts of data abstraction and inheritance
from the computer programming discipline to promote the reuse of model
constituent definitions.

1 lowever, this tool is difficult to usc for both developers and domain
experls sincei! does not provide a complete modeling environment. Specif-
ically, EDSE is not interactive; the user isrequired to have knowledge of the
| isp environment in which EDsE is hosted; EDsE does not support graphical
presentation of simulation results; and finally, the tool offers no support for
incremental model development,

Our objectives for synthesizing MEsa are twofold: First, we desire an
interactive tool to assist our own efforts in developing and verifying causal
models and in experimenting with the models through simulation and
playback of historical data files. Such a tool should address the shortcom-
ings of stand-alone ¥k described above. Second, we wish to provide our
domain experts and process engineers with a knowledge acquisition tool to

help them express causal relationships within and amongst the components
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Figure 1: Conceptual view of MESA.

of aphysical systemof int erest.

1.3 Architecture

MESA achieves our objectives by integrating EDSE and EDsEL with a graph-
ical user interface (GUI) that encourages model development and model-
based reasoning efforts to be interleaved. The environment makes model-
ing and model-based reasoning tools available at all phases of application
development. in this manner, models and applications evolve as a conse-
quence of incremental changes to an initial design.

Conceptually, MEsA comprises three distinct but cooperative pieces as
shown in Figure1. EDskE and EDsEL (really its compiler) are essentially
embedded subsystems of MESA.

As implemented, MESA consists of two computational processes that

communicale asynchronous|] y: Graphical model-building tools are pro-
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vided by G2, a commercially available real-time expert system shell. The
G2 process aso comprises a trandator that parses the contents of the G2
data structures that represent a causal model and writes the model to afile
as EDSEL statements. A separate Lisp process executes EDSE. Component
and schematic libraries are stored in the file system of the host computer.
All user interaction with MEsA happens through the GUI provided by C;2,
thereby unifying the Mrsa constituents under a single, consistent point-

and-click interface,

2 Concepts in Causal Modeling

Causal models are an abstraction for describing the behavior of asystem by
representing the physical processes occurring within the system as discrete

functions to be evaluated by the computer.

2.1 Causal Models and Simulation

A causal model characterizes a physics] system interms of state vari-
ables and carnal influence relations among the variables. in the causal
graph defined by the state variables and influence relations, changes in any

variable may be propagated to other variables through the influence rcla-



tires. Causal simulation is the process of tracking changes in variables and
propagating themto other variables through influence relations, thereby
producing a new setof changes [5]. Implicit in the notion of causality are
the concepts of eventand causal time: Events comprise changes in state
variables due to a specific influence relation and with respect to a specific
moment in time. Thereby, causal time moves forward due to delaysin the
propagation of changesinthe causal model.

MESA represents causal models (at a low-level, via Epsk) in terms of
the primitives de.scribed above. Mesa adopts the following terminology:
Causal timeis expressed as a monotonically increasing sequence of integer-
valued instants. Each state variable is denoted by a quantity of type integer,
float or symbol. Each influence relation is described by a mechanism which
encapsul ates a set of input quantities, a set of output quantities, and transfer
and delay functions.1 bring simulation, the transfer function is evaluated
with the mechanism input quantities to produce a value that will be prop
agated to each of the mechanism output quantities. The delay function
is simultaneously evaluated to produce an offset from the current simula-
tion time. Value propagation takes place at the relative time returned by
the delay function. Figure 2 visualizes mechanism evaluation. Simulation

continues until a mm-specified time limit is reached or the model reaches
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Figure 2: Caus | simulation: A mechanism evalual 1 at time ¢; will prop-
agate its value at tiq 5.

quicscence.

2.2 Component-centered Modeling

At the user level, Mesa adopts a component-centered approach to causal
modeling. This modeling approach distinguishes the constituents of the
system being modeled as components and the structural connections be-
tween them (Figure 3. A physical component is intuitively defined as a
discrete element of a physical system, For example, in the EATCS evap-
orator loop schematic (Figure 4) we have identified Cv1,Cv2andil as
components. By analogy, a causal component is an entity that encapsulates
the behavior of the corresponding physical component as a whole.

A connection is an abstraction which characterizes the interaction path-

ways between components. A connection within a physical system enables




Figure 3: An abstract causal model. in the component-centered view, we
reason about components (boxes) and the connections (arrows) between
them.
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Figure 4: A simplified schematic of the EATCS evaporator |oop.



material flow between components. Similarly, a causal connection allows

guantity values to be propagated between components.

The component-centered approach to causal modeling engenders mod-
els which are isomorphic to a component-centered view of the physics|
syst em being modeled. This result is advantageous since domain experts
intuitively reason about systems from a component-centered perspective.
A model formed by a configuration of causal components and connections
(e.g., Figure 4) maps onto the schematic configuration of the corresponding
physical system. Mgsa exploits thissimilarit y by presenting the outcome of
model-based reasoning in a graphical format that is familiar to the domain

experts (see Sect ion 43)0

2.3 Internal Representation of Components

Components may be regarded as a convenient abstraction for partitioning
the causal graph into groups of semantically related quantities and mech-
anisms. Our experience with causal modeling has shown that it is useful
and often necessary to subdivide the quantities into groups that represent

the sources and sinks of the physical processes modeled by mechanisms.
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Figure 5: Internal representation and configuration of a component,

A locde is an abstraction for grouping quantities within a component.
For example, a pipe component could be modeled with separate locales
for fluid flow at its inlet and outlet. in this fashion, locales serve as an
isomorphism for locations of activity on a physical component.

Figure 5 visualizes theinternal representation of components in MEsANote
that mechanisms are not grouped with respect to alocale. Also, conneclions

in MFsa are realized at the locales of the component being, connected.

3 User Processes and the GUI

This section delails the mode and manner in which the user interacts with
MESA. We begin with a brief description of the concepts in the GUI. The

iy Epsel syntax allows locales to be nested within one another, thereby creating a tree

of locales. Each successivelevel in the t ree denotes a smaller partitioningof the quantities on
the component. Conversely, the component itself is considercd to be an all-encompassing,
locale that forms the root of the locale tree.
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remainder of this section uses arunning example to illustrate the processes
that inform model development Our example, a venturicomponent, is

drawn from our diagnosis application for EATCS.

3.1 Concepts in the GUI

All of the MEsA user interfaces are builtusing G2’s GUIDE/UIL (Graphical

User Interface Development Environment /User Interface Library) which
is patterned after the Motif/X Windows paradigm The entry point into the
MEsA GUI is acontrol panel called the Workbench (Figure 6). Workbench
contains several buttons which are used consistently across the GUI. A
button labeled with the letter “X” dismisses the control panel on which it
islocated. A button labeled with a question mark “?” pops up a dialog of
helpful information about the interface on which it is located. The buttons
labeled with an arrow serve to navigate among the various control panels
of the interface. Most control panels have a parent button (up-arrow) to
switch to the parent control panel. Since the Workbench is Mesa’stop-level
control panel, it has no parent button. The down-arrow buttons are used
to pop up dialog boxes in which the user is prompted for information or a
choice of actions.

One unique feature of the G2 GUlis the concept of workspace. A
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Figure 6: Workbench is the top-level control panel through which all mod-
eling and nloclcl-based. reasoning tools can be accessed.

workspace is a rectangular area on the computer screen that serves to
display and organize information inthe form of icons. Each icon rep-
resents an object in the application hosted by C;2. icons also provide a
direct-manipulation interface for accessing the attributes of each object.
Subworkspaces may be stored on an icon, thereby allowing the user to

create an hierarchy of workspaces.

3.2 User Processes

MrsA addresses the development of models and applications with three

user processes: mod el design, model assembl y and nlodcl-based reasoning.
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3.2.1 Model Design

Modeldesign isthe process of ascertaining how physical components are
to be modeled as causal components. First, the system of interest must be
partitioned into components. Then, for each component, the appropriate
component class must be selected from MESA’s Component Library or it
must be created from scratch with the Component Tool

Classes in MEsA act as templates from which an infinite number of
component instances may be created. Every component class contains a set
of specifications for realizing component instances recursively as instances
of locales. Additionally, every component class implements a graphical
icon that is used to represent component instances in the GUL

Let us consider a top-down design for the venturi component from
the EATCS evaporator loop model. The user initiates the design process by
select ing the Component Tool from t he Workbench cent rol panel (Figure 6).
This action pops up the control panel for the chosen tool (Figure 7). The
user must enter a name for the component in the text field. Clicking in
the button labeled with a “C” instructs Mrsa to add the named component
class to the component library and then pops up a new workspace for the

class.
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Figure 7: The Component Tool control panel.

At this point, MESA shifls the user’s attention to the workspace associ-
ated with the component class. This workspace is used to store the internal
representation of classes in MEsA. in Figure 8, the (wo triangle-shaped
icons arc G2 object definitions (classes). VENTURI - COMPONENT imple-
ments the behavior of the component as a set of specifications for quanti-
ties and mechanisms. VENTURT - SCHEMA implements a user-customizable
icon that is usedto graphically display instances of a venturi in causal
models. MESA automatically generates the names of these classes from
the name entered by the user when the component was created. Initially,
only the VENTURI - COMPONENT and VENTURI- SCHEMA icons are present
on the venturi component workspace, and the set of specifications in
VENTURI- COMPONENT iS emply.

Top-down design continues by adding the necessary locale specifica-

tions to the venturi component workspace. 1.ocale specifications are
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Figure 8. The venturi component workspace stores class definitions and
locale specifications.
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implemented as instances of locale-spec classes and represented graphi-
aly with a “crossed-square” icon (Figure 8). Again, the user is faced with
the choice of selecting a predefined locale from MESA’s Locale Library or
defining one from scratch. 1'he Locale Library maybe accessed directly by
clicking on the Add Locale button on the venturi component workspace.
This action pops up a scrolling list from which the user may make asingle
selection. Locale Tool (accessible from the Workbench) provides a locale
definition interface that parallels the component definition interface pro-
vided by Component Tool. A new workspace is created by Mrsa for each
new locale class created by the user. The workspace isinitially empty, save
for the the AMMONI A- 1 ,0CATE. and AMMONIA-SCHEMA class icons. For ex-
ample, Figure 9 shows the workspace associated with the ammonialocale
class. Ammonia locales arc specified as thein1 et and out 1et (or source
and sink) of the venturi component.

Top-down design proceeds with the addition of quantity specifications
to the ammoni a locale workspace. However, MESA does not provide a tool
for defining new quantity classes. The set of quantity classes (types) is
restricted by the set of variable types that EDsk can handle. Accord ingly,
the user interface for quantity specifications simply enumerates the static

sct of variable types. The Add Quantity button on theammonialocale

17



i [
(o , . .
%] [4] The schomatic of the amawonia localo

[v] Tho causal doscription of tho ammonia localo

Add quantity I
Add parameoter I A

AMMONIA LOCALE

Figure 9: The anmoni a locale workspace stores quantity specifications.
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Figure 10: Quantities are restricted to three value types-integer, symbol
and floating point.

workspace popsup the dialogue shown in Figure 10. The user merely enters
aname and chooses the appropriate type to define a quantity specification
to be stored on the locale workspace. The Add Parameter button pops up
the same dialogue; a parameter in MESA is a quantity whose value never
changes (i.e., it isamot node in the causal graph).

Let us move forward in our discussion to the point a which the user
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has defined all of the locales and quantities necessary to a given compo-
nent. All that remains to complete the model design for the component is
to define aset of mechanisms that mirror the behavior of the physical com-
ponent at some level of abstraction, The venturi component workspace
has a subworkspace for describing causal model of the venturicompo-
nentin term.. of primitive quantities and mechanisms (Figure 11). This
subworkspace is accessible through a navigation button on the venturi
component workspace. Quantities arc graphically represented by circular
icons with connection stubs on the left and right. Mechanism are repre-
sented by similar icons labeled with the letter “M,”

Mechanisms are added to the causal subworkspace by clicking on the
Add Mechanism button. This action instructs Mesa to prompt the user for
a mechanism name and to create a new mechanism with that name on the
causal subworkspace. The user may then draw with the mouse a link from
the right stub of a quantity icon to the left stub of a mechanism icon, thereby
defining the quantity as an input to the mechanism. Output quantities are
defined by joining the left stub of a quantity icon with the right stub of a
mechanism icon.

Mechanism definition is completed by coding the underlying transfer

and delay functions of the mechanism. Currently, MEsSA requires these
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Figure 11: Ix3w-level representation of {he venturi component.

20




functionsto be writ ten as | .isp expressions.”The names of the mechanism
input quantities may appear asfree variable references in atransfer ordelay
expression. When an expression is evaluated during carna simulation,
all such references are bound (within the lexical scope of the expression)
to the current value of the quantity named by the reference. The single
value computed by the expression is then propagated to the outputs of the

mechanism by the simulator.

3.2.2 Model Assembly

Model assembly is the process of creating instances of components from
the appropriate class definition. In contrast to the design process, model
assembly is exceedingly simple. Component icons are utilized as adirect-
manipulation interface to the model assembly process. icons may be du-
plicated and moved with the mouse. Connections are established by using
the mouse to draw a link between two component icons on a schematic.
Figure 4 shows a smplified schematic of the evaporator loop of the
EATCS application. Each component on this schematic was created by
instantiating a component from the library using the dialog box accessible

3This requirement is actually imposed by the syntax of Epstl, and the implementation

of EDSE as a Lisp application program. in future versions of MEsA, we hope to provide a
graphical method for specifying component behavior.
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Choose a component from the library:

| 4} VENTURI
DIV-T

EVAPORATOR
HEAT-SRC

Name component I Cancel I

Figure 12: A list of components available in the library.

via the Add Component button on the schematic (Figure12).

4 Status

MESA is an ongoing effort a JPL. The environment described in this re-
portisin use for severa projects at JI’1. and for the KATCS application at
McDonnell Douglas Aerospace. The three user processes of MESA are at

various stages of development and arc discussed separately.
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4.1 Model design

Model design involves defining components in terms of locales, quantities
and mechanisms. This work occurs entirely within G2 and relics exten-
sively cm its user interface. Two factors affect the development of these
user interfaces: the flexibility of G2 in its ability to support complex user
interactions, and the human factors involved in organizing the locales and
components appropriately according to domains, applications, or other
criteria.

Human factors arethe main driving force in the design of the user
interface for model design. With the use of Mesa at J'], and McDonnell
Douglas, we expect to gain sufficient experience to provide users with

adequate tools for organizing model libraries.

4.2 Model assembly

Model assembly involves two phases: modeling (i.e., selecting component
classes from the MEsA library according to the component-centered view of
the physical system being modeled) and instantiation (i.e., implementing
the causal model of the same physical system for model-based reasoning).

The latter phase is relatively stable, but there are several openissues in the

23




modeling phase.

Physical system modeling iSsimilar to model design and similar human
factor issues also affect the user interface. Yor example, severa versions
of physical systems can be modeled. That is, causal models may comprise
different component models according to the level of granularity desired
by the user. Also, physical systems may be combined in related units by
function, location, or other criteria. Finally, several versions of a model
may have to be tracked as the design of the components or construction of

the physical systems evolves from an initial design.

4.3 Model-based reasoning

The EDsSE simulator is the basic model-based reasoning tool used in MEsA.
The Ebsk simulation protocol and the availability of the causalmodel in
EDSE and MEesa provide adequate flexibility toimplement various model-
based reasoning techniques. Two such techniques, sensitivity and cascading-
alarm analysis, have already been developed as extensions of the EDSE sim-
ulator for the SEI MON project. Currently, a diagnosis module and a causal

feedback simulation controller are under development for the EATCS ap-

plication in MEsA.
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4.3.1 Diagnosis

Par{ of the original motivation for MEsA was to provide a platform to host
adomain-independent diagnosis engine for several applications at )] '1,
and McDonnell Douglas. For example, diagnosis results can be present ed
at the structural (component /connection) level or the behavioral (quan-
tity/mechanism) level according to the user’s preference. Furthermore, by
integrating several model-based reasoning tools within the same environ-
ment, it is possible to experiment with the impact of various combinat ions
of such tools. For example, the model developer can try different sensor
placements while at the same time stress the diagnosis engine by injecting,
faults in the model. Sensor placement and fault modeling arc not part of

the diagnosis engine; rather, they help in evaluating the diagnosis engine.

4.3.2 Causal feedback

With large physical systems and numerous types of components involved,
it is possible that the causal model of a physical system will have feedback
loops. Various techniques, such as causal ordering [3] orprediction of initia
and final response [4] and behavioral abst raction [6] have been proposed as

solutions. in MrsaA the causal model isautomatically analyzed to detect all
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possible causal loops. Mrsa presents the results of this analysis to the user,

who may then choose a specific feedback analysis technique to be applied,
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